نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • نوع العنصر
      نوع العنصر
      امسح الكل
      نوع العنصر
  • الموضوع
      الموضوع
      امسح الكل
      الموضوع
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      المصدر
    • اللغة
115,892 نتائج ل "Amino Acids - chemistry"
صنف حسب:
Amino Acid Transporters and Exchangers from the SLC1A Family: Structure, Mechanism and Roles in Physiology and Cancer
The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems—the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues Glt Ph and Glt Tk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.
Amino acid uptake in arbuscular mycorrhizal plants
We examined the extent to which arbuscular mycorrhizal (AM) fungi root improved the acquisition of simple organic nitrogen (ON) compounds by their host plants. In a greenhouse-based study, we used quantum dots (fluorescent nanoparticles) to assess uptake of each of the 20 proteinaceous amino acids by AM-colonized versus uncolonized plants. We found that AM colonization increased uptake of phenylalanine, lysine, asparagine, arginine, histidine, methionine, tryptophan, and cysteine; and reduced uptake of aspartic acid. Arbuscular mycorrhizal colonization had the greatest effect on uptake of amino acids that are relatively rare in proteins. In addition, AM fungi facilitated uptake of neutral and positively-charged amino acids more than negatively-charged amino acids. Overall, the AM fungi used in this study appeared to improve access by plants to a number of amino acids, but not necessarily those that are common or negatively-charged.
Wobble tRNA modification and hydrophilic amino acid patterns dictate protein fate
Regulation of mRNA translation elongation impacts nascent protein synthesis and integrity and plays a critical role in disease establishment. Here, we investigate features linking regulation of codon-dependent translation elongation to protein expression and homeostasis. Using knockdown models of enzymes that catalyze the mcm s wobble uridine tRNA modification (U -enzymes), we show that gene codon content is necessary but not sufficient to predict protein fate. While translation defects upon perturbation of U -enzymes are strictly dependent on codon content, the consequences on protein output are determined by other features. Specific hydrophilic motifs cause protein aggregation and degradation upon codon-dependent translation elongation defects. Accordingly, the combination of codon content and the presence of hydrophilic motifs define the proteome whose maintenance relies on U -tRNA modification. Together, these results uncover the mechanism linking wobble tRNA modification to mRNA translation and aggregation to maintain proteome homeostasis.
An overview on d-amino acids
More than half a century ago researchers thought that d -amino acids had a minor function compared to l -enantiomers in biological processes. Many evidences have shown that d -amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, d -serine ( d -Ser) acts as a co-agonist of the N -methyl- d -aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. d -Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, d -aspartate ( d -Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. d -Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain d -amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of d -amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of d -amino acids: amino acid racemase in the synthesis and d -amino acid oxidase in the degradation.
Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications
The natural genetic code only allows for 20 standard amino acids in protein translation, but genetic code reprogramming enables the incorporation of non-standard amino acids (NSAAs). Proteins containing NSAAs provide enhanced or novel properties and open diverse applications. With increased attention to the recent advancements in synthetic biology, various improved and novel methods have been developed to incorporate single and multiple distinct NSAAs into proteins. However, various challenges remain in regard to NSAA incorporation, such as low yield and misincorporation. In this review, we summarize the recent efforts to improve NSAA incorporation by utilizing orthogonal translational system optimization, cell-free protein synthesis, genomically recoded organisms, artificial codon boxes, quadruplet codons, and orthogonal ribosomes, before closing with a discussion of the emerging applications of NSAA incorporation.
Physiological functions of D-amino acid oxidases: from yeast to humans
D-Amino acid oxidase (DAAO) is a FAD-containing flavoenzyme that catalyzes the oxidative deamination of D-isomers of neutral and polar amino acids. This enzymatic activity has been identified in most eukaryotic organisms, the only exception being plants. In the various organisms in which it does occur, DAAO fulfills distinct physiological functions: from a catabolic role in yeast cells, which allows them to grow on D-amino acids as carbon and energy sources, to a regulatory role in the human brain, where it controls the levels of the neuromodulator D-serine. Since 1935, DAAO has been the object of an astonishing number of investigations and has become a model for the dehydrogenase-oxidase class of flavoproteins. Structural and functional studies have suggested that specific physiological functions are implemented through the use of different structural elements that control access to the active site and substrate/product exchange. Current research is attempting to delineate the regulation of DAAO functions in the contest of complex biochemical and physiological networks.
Identification and characterization of novel broad-spectrum amino acid racemases from Escherichia coli and Bacillus subtilis
The peptidoglycan layer of the bacterial cell wall typically contains d -alanine ( d -Ala) and d -glutamic acid ( d -Glu), and also various non-canonical d -amino acids that have been linked to peptidoglycan remodeling, inhibition of biofilm formation, and triggering of biofilm disassembly. Bacteria produce d -amino acids when adapting to environmental changes as a common survival strategy. In our previous study, we detected non-canonical d -amino acids in Escherichia coli grown in minimal medium. However, the biosynthetic pathways of non-canonical d -amino acids remain poorly understood. In the present study, we identified amino acid racemases in E. coli MG1655 (YgeA) and Bacillus subtilis (RacX) that produce non-canonical d -amino acids other than d -Ala and d -Glu. We characterized their enzymatic properties, and both displayed broad substrate specificity but low catalytic activity. YgeA preferentially catalyzes the racemization of homoserine, while RacX preferentially racemizes arginine, lysine, and ornithine. RacX is dimeric, and appears not to require pyridoxal 5′-phosphate (PLP) as a coenzyme as is the case with YgeA. To our knowledge, this is the first report on PLP-independent amino acid racemases possessing broad substrate specificity in E. coli and B. subtilis .
Impact of C‐terminal amino acid composition on protein expression in bacteria
The C‐terminal sequence of a protein is involved in processes such as efficiency of translation termination and protein degradation. However, the general relationship between features of this C‐terminal sequence and levels of protein expression remains unknown. Here, we identified C‐terminal amino acid biases that are ubiquitous across the bacterial taxonomy (1,582 genomes). We showed that the frequency is higher for positively charged amino acids (lysine, arginine), while hydrophobic amino acids and threonine are lower. We then studied the impact of C‐terminal composition on protein levels in a library of Mycoplasma pneumoniae mutants, covering all possible combinations of the two last codons. We found that charged and polar residues, in particular lysine, led to higher expression, while hydrophobic and aromatic residues led to lower expression, with a difference in protein levels up to fourfold. We further showed that modulation of protein degradation rate could be one of the main mechanisms driving these differences. Our results demonstrate that the identity of the last amino acids has a strong influence on protein expression levels. Synopsis Large‐scale genomics analyses combined with high‐throughput experimental assays reveal that the C‐terminal amino acid composition has a strong influence on protein expression levels in bacteria. C‐terminal amino acid biases are ubiquitous across bacterial taxonomy: positively charged residues (lysine, arginine) are enriched at the last position, while hydrophobic amino acids and threonine are depleted. High‐throughput expression assays using a reporter gene library showed that protein expression varies up to 4‐fold, with C‐terminal positively and negatively charged residues increasing expression, and hydrophobic residues decreasing expression. Modulation of protein degradation rate due to the identity of the C‐terminal residue could explain ˜ 85% of the variation in protein expression. These results are relevant for the optimization of heterologous protein sequences, where the choice of C‐terminal residues could lead to increased expression levels. Large‐scale genomics analyses combined with high‐throughput experimental assays reveal that the C‐terminal amino acid composition has a strong influence on protein expression levels in bacteria.
Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses
The role of symbiosis in bacterial symbiont genome evolution is well understood, yet the ways that symbiosis shapes host genomes or more particularly, host/symbiont genome coevolution in the holobiont is only now being revealed. Here, we identify three coevolutionary signatures that characterize holobiont genomes. The first signature, host/symbiont collaboration, arises when completion of essential pathways requires host/endosymbiont genome complementarity. Metabolic collaboration has evolved numerous times in the pathways of amino acid and vitamin biosynthesis. Here, we highlight collaboration in branched-chain amino acid and pantothenate (vitamin B5) biosynthesis. The second coevolutionary signature is acquisition, referring to the observation that holobiont genomes acquire novel genetic material through various means, including gene duplication, lateral gene transfer from bacteria that are not their current obligate symbionts, and full or partial endosymbiont replacement. The third signature, constraint, introduces the idea that holobiont genome evolution is constrained by the processes governing symbiont genome evolution. In addition, we propose that collaboration is constrained by the expression profile of the cell lineage from which endosymbiont-containing host cells, called bacteriocytes, are derived. In particular, we propose that such differences in bacteriocyte cell lineage may explain differences in patterns of host/endosymbiont metabolic collaboration between the sap-feeding suborders Sternorrhyncha and Auchenorrhynca. Finally, we review recent studies at the frontier of symbiosis research that are applying functional genomic approaches to characterization of the developmental and cellular mechanisms of host/endosymbiont integration, work that heralds a new era in symbiosis research.
A suicide enzyme catalyzes multiple reactions for biotin biosynthesis in cyanobacteria
In biotin biosynthesis, the conversion of pimeloyl intermediates to biotin is catalyzed by a universal set of four enzymes: BioF, BioA, BioD and BioB. We found that the gene homologous to bioA, the product of which is involved in the conversion of 8-amino-7-oxononanoate (AON) to 7,8-diaminononanoate (DAN), is missing in the genome of the cyanobacterium Synechocystis sp. PCC 6803. We provide structural and biochemical evidence showing that a novel dehydrogenase, BioU, is involved in biotin biosynthesis and functionally replaces BioA. This enzyme catalyzes three reactions: formation of covalent linkage with AON to yield a BioU-DAN conjugate at the ε-amino group of Lys124 of BioU using NAD(P)H, carboxylation of the conjugate to form BioU-DAN-carbamic acid, and release of DAN-carbamic acid using NAD(P) . In this biosynthetic pathway, BioU is a suicide enzyme that loses the Lys124 amino group after a single round of reaction.